
Preface

We study data structures so that we can learn to write more efficient programs.
But why must programs be efficient when new computers are faster every year?
The reason is that our ambitions grow with our capabilities. Instead of rendering
efficiency needs obsolete, the modern revolution in computing power and storage
capability merely raises the efficiency stakes as we attempt more complex tasks.

The quest for program efficiency need not and should not conflict with sound
design and clear coding. Creating efficient programs has little to do with “program-
ming tricks” but rather is based on good organization of information and good al-
gorithms. A programmer who has not mastered the basic principles of clear design
is not likely to write efficient programs. Conversely, concerns related to develop-
ment costs and maintainability should not be used as an excuse to justify inefficient
performance. Generality in design can and should be achieved without sacrificing
performance, but this can only be done if the designer understands how to measure
performance and does so as an integral part of the design and implementation pro-
cess. Most computer science curricula recognize that good programming skills be-
gin with a strong emphasis on fundamental software engineering principles. Then,
once a programmer has learned the principles of clear program design and imple-
mentation, the next step is to study the effects of data organization and algorithms
on program efficiency.

Approach: This book describes many techniques for representing data. These
techniques are presented within the context of the following principles:

1. Each data structure and each algorithm has costs and benefits. Practitioners
need a thorough understanding of how to assess costs and benefits to be able
to adapt to new design challenges. This requires an understanding of the
principles of algorithm analysis, and also an appreciation for the significant
effects of the physical medium employed (e.g., data stored on disk versus
main memory).

2. Related to costs and benefits is the notion of tradeoffs. For example, it is quite
common to reduce time requirements at the expense of an increase in space
requirements, or vice versa. Programmers face tradeoff issues regularly in all

xiii



xiv Preface

phases of software design and implementation, so the concept must become
deeply ingrained.

3. Programmers should know enough about common practice to avoid rein-
venting the wheel. Thus, programmers need to learn the commonly used
data structures, their related algorithms, and the most frequently encountered
design patterns found in programming.

4. Data structures follow needs. Programmers must learn to assess application
needs first, then find a data structure with matching capabilities. To do this
requires competence in Principles 1, 2, and 3.

As I have taught data structures through the years, I have found that design
issues have played an ever greater role in my courses. This can be traced through
the various editions of this textbook by the increasing coverage for design patterns
and generic interfaces. The first edition had no mention of design patterns. The
second edition had limited coverage of a few example patterns, and introduced
the dictionary ADT. With the third edition, there is explicit coverage of some
design patterns that are encountered when programming the basic data structures
and algorithms covered in the book.

Using the Book in Class: Data structures and algorithms textbooks tend to fall
into one of two categories: teaching texts or encyclopedias. Books that attempt to
do both usually fail at both. This book is intended as a teaching text. I believe it is
more important for a practitioner to understand the principles required to select or
design the data structure that will best solve some problem than it is to memorize a
lot of textbook implementations. Hence, I have designed this as a teaching text that
covers most standard data structures, but not all. A few data structures that are not
widely adopted are included to illustrate important principles. Some relatively new
data structures that should become widely used in the future are included.

Within an undergraduate program, this textbook is designed for use in either an
advanced lower division (sophomore or junior level) data structures course, or for
a senior level algorithms course. New material has been added in the third edition
to support its use in an algorithms course. Normally, this text would be used in a
course beyond the standard freshman level “CS2” course that often serves as the
initial introduction to data structures. Readers of this book should typically have
two semesters of the equivalent of programming experience, including at least some
exposure to Java. Readers who are already familiar with recursion will have an
advantage. Students of data structures will also benefit from having first completed
a good course in Discrete Mathematics. Nonetheless, Chapter 2 attempts to give
a reasonably complete survey of the prerequisite mathematical topics at the level
necessary to understand their use in this book. Readers may wish to refer back
to the appropriate sections as needed when encountering unfamiliar mathematical
material.



Preface xv

A sophomore-level class where students have only a little background in basic
data structures or analysis (that is, background equivalent to what would be had
from a traditional CS2 course) might cover Chapters 1-11 in detail, as well as se-
lected topics from Chapter 13. That is how I use the book for my own sophomore-
level class. Students with greater background might cover Chapter 1, skip most
of Chapter 2 except for reference, briefly cover Chapters 3 and 4, and then cover
chapters 5-12 in detail. Again, only certain topics from Chapter 13 might be cov-
ered, depending on the programming assignments selected by the instructor. A
senior-level algorithms course would focus on Chapters 11 and 14-17.

Chapter 13 is intended in part as a source for larger programming exercises.
I recommend that all students taking a data structures course be required to im-
plement some advanced tree structure, or another dynamic structure of comparable
difficulty such as the skip list or sparse matrix representations of Chapter 12. None
of these data structures are significantly more difficult to implement than the binary
search tree, and any of them should be within a student’s ability after completing
Chapter 5.

While I have attempted to arrange the presentation in an order that makes sense,
instructors should feel free to rearrange the topics as they see fit. The book has been
written so that once the reader has mastered Chapters 1-6, the remaining material
has relatively few dependencies. Clearly, external sorting depends on understand-
ing internal sorting and disk files. Section 6.2 on the UNION/FIND algorithm is
used in Kruskal’s Minimum-Cost Spanning Tree algorithm. Section 9.2 on self-
organizing lists mentions the buffer replacement schemes covered in Section 8.3.
Chapter 14 draws on examples from throughout the book. Section 17.2 relies on
knowledge of graphs. Otherwise, most topics depend only on material presented
earlier within the same chapter.

Most chapters end with a section entitled “Further Reading.” These sections
are not comprehensive lists of references on the topics presented. Rather, I include
books and articles that, in my opinion, may prove exceptionally informative or
entertaining to the reader. In some cases I include references to works that should
become familiar to any well-rounded computer scientist.

Use of Java: The programming examples are written in Java, but I do not wish to
discourage those unfamiliar with Java from reading this book. I have attempted to
make the examples as clear as possible while maintaining the advantages of Java.
Java is used here strictly as a tool to illustrate data structures concepts. In particular,
I make use of Java’s support for hiding implementation details, including features
such as classes, private class members, and interfaces. These features of the
language support the crucial concept of separating logical design, as embodied
in the abstract data type, from physical implementation as embodied in the data
structure.



xvi Preface

As with any programming language, Java has both advantages and disadvan-
tages. Java is a small language. There usually is only one language feature to do
something, and this has the happy tendency of encouraging a programmer toward
clarity when used correctly. In this respect, it is superior to C or C++. Java serves
nicely for defining and using most traditional data structures such as lists and trees.
On the other hand, Java is quite poor when used to do file processing, being both
cumbersome and inefficient. It is also a poor language when fine control of memory
is required. As an example, applications requiring memory management, such as
those discussed in Section 12.3, are difficult to write in Java. Since I wish to stick
to a single language throughout the text, like any programmer I must take the bad
along with the good. The most important issue is to get the ideas across, whether
or not those ideas are natural to a particular language of discourse. Most program-
mers will use a variety of programming languages throughout their career, and the
concepts described in this book should prove useful in a variety of circumstances.

Inheritance, a key feature of object-oriented programming, is used sparingly
in the code examples. Inheritance is an important tool that helps programmers
avoid duplication, and thus minimize bugs. From a pedagogical standpoint, how-
ever, inheritance often makes code examples harder to understand since it tends to
spread the description for one logical unit among several classes. Thus, my class
definitions only use inheritance where inheritance is explicitly relevant to the point
illustrated (e.g., Section 5.3.1). This does not mean that a programmer should do
likewise. Avoiding code duplication and minimizing errors are important goals.
Treat the programming examples as illustrations of data structure principles, but do
not copy them directly into your own programs.

One painful decision I had to make was whether to use generics in the code
examples. Generics were not used in the first edition of this book. But in the years
since then, Java has matured and its use in computer science curricula has greatly
expanded. I now assume that readers of the text will be familiar with generic syntax.
Thus, generics are now used extensively in the code examples.

My implementations are meant to provide concrete illustrations of data struc-
ture principles, as an aid to the textual exposition. Code examples should not be
read or used in isolation from the associated text because the bulk of each exam-
ple’s documentation is contained in the text, not the code. The code complements
the text, not the other way around. They are not meant to be a series of commercial-
quality class implementations. If you are looking for a complete implementation
of a standard data structure for use in your own code, you would do well to do an
Internet search.

For instance, the code examples provide less parameter checking than is sound
programming practice, since including such checking would obscure rather than
illuminate the text. Some parameter checking and testing for other constraints
(e.g., whether a value is being removed from an empty container) is included in



Preface xvii

the form ofcalls to methods in class Assert. Method Assert.notFalse
takes a Boolean expression. If this expression evaluates to false, then a message
is printed and the program terminates immediately. Method Assert.notNull
takes a reference to class Object, and terminates the program if the value of
the reference is null. (To be precise, they throw an IllegalArgument-
Exception, which will terminate the program unless the programmer takes ac-
tion to handle the exception.) Terminating a program when a function receives a
bad parameter is generally considered undesirable in real programs, but is quite
adequate for understanding how a data structure is meant to operate. In real pro-
gramming applications, Java’s exception handling features should be used to deal
with input data errors. However, assertions provide a simpler mechanism for indi-
cating required conditions in a way that is both adequate for clarifying how a data
structure is meant to operate, and is easily modified into true exception handling.

I make a distinction in the text between “Java implementations” and “pseu-
docode.” Code labeled as a Java implementation has actually been compiled and
tested on one or more Java compilers. Pseudocode examples often conform closely
to Java syntax, but typically contain one or more lines of higher-level description.
Pseudocode is used where I perceived a greater pedagogical advantage to a simpler,
but less precise, description.

Exercises and Projects: Proper implementation and analysis of data structures
cannot be learned simply by reading a book. You must practice by implementing
real programs, constantly comparing different techniques to see what really works
best in a given situation.

One of the most important aspects of a course in data structures is that it is
where students really learn to program using pointers and dynamic memory al-
location, by implementing data structures such as linked lists and trees. It is often
where students truly learn recursion. In our curriculum, this is the first course where
students do significant design, because it often requires real data structures to mo-
tivate significant design exercises. Finally, the fundamental differences between
memory-based and disk-based data access cannot be appreciated without practical
programming experience. For all of these reasons, a data structures course cannot
succeed without a significant programming component. In our department, the data
structures course is one of the most difficult programming course in the curriculum.

Students should also work problems to develop their analytical abilities. I pro-
vide over 450 exercises and suggestions for programming projects. I urge readers
to take advantage of them.

Contacting the Author and Supplementary Materials: A book such as this
is sure to contain errors and have room for improvement. I welcome bug reports
and constructive criticism. I can be reached by electronic mail via the Internet at
shaffer@vt.edu. Alternatively, comments can be mailed to



xviii Preface

Cliff Shaffer
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

The electronic posting of this book, along with a set of lecture notes for use in
class can be obtained at

http://www.cs.vt.edu/˜shaffer/book.html.

The code examples used in the book are available at the same site. Online Web
pages for Virginia Tech’s sophomore-level data structures class can be found at

http://courses.cs.vt.edu/˜cs3114.

Readers of this textbook will be interested in our open-source, online eText-
book project, OpenDSA (http://algoviz.org/OpenDSA). The OpenDSA
project’s goal is to ceate a complete collection of tutorials that combine textbook-
quality content with algorithm visualizations for every algorithm and data structure,
and a rich collection of interactive exercises. When complete, OpenDSA will re-
place this book.

This book was typeset by the author using LATEX. The bibliography was pre-
pared using BIBTEX. The index was prepared using makeindex. The figures were
mostly drawn with Xfig. Figures 3.1 and 9.10 were partially created using Math-
ematica.

Acknowledgments: It takes a lot of help from a lot of people to make a book.
I wish to acknowledge a few of those who helped to make this book possible. I
apologize for the inevitable omissions.

Virginia Tech helped make this whole thing possible through sabbatical re-
search leave during Fall 1994, enabling me to get the project off the ground. My de-
partment heads during the time I have written the various editions of this book, Den-
nis Kafura and Jack Carroll, provided unwavering moral support for this project.
Mike Keenan, Lenny Heath, and Jeff Shaffer provided valuable input on early ver-
sions of the chapters. I also wish to thank Lenny Heath for many years of stimulat-
ing discussions about algorithms and analysis (and how to teach both to students).
Steve Edwards deserves special thanks for spending so much time helping me on
various redesigns of the C++ and Java code versions for the second and third edi-
tions, and many hours of discussion on the principles of program design. Thanks
to Layne Watson for his help with Mathematica, and to Bo Begole, Philip Isenhour,
Jeff Nielsen, and Craig Struble for much technical assistance. Thanks to Bill Mc-
Quain, Mark Abrams and Dennis Kafura for answering lots of silly questions about
C++ and Java.

I am truly indebted to the many reviewers of the various editions of this manu-
script. For the first edition these reviewers included J. David Bezek (University of

http://www.cs.vt.edu/~shaffer/book.html
http://courses.cs.vt.edu/~cs3114
http://algoviz.org/OpenDSA


Preface xix

Evansville), Douglas Campbell (Brigham Young University), Karen Davis (Univer-
sity of Cincinnati), Vijay Kumar Garg (University of Texas – Austin), Jim Miller
(University of Kansas), Bruce Maxim (University of Michigan – Dearborn), Jeff
Parker (Agile Networks/Harvard), Dana Richards (George Mason University), Jack
Tan (University of Houston), and Lixin Tao (Concordia University). Without their
help, this book would contain many more technical errors and many fewer insights.

For the second edition, I wish to thank these reviewers: Gurdip Singh (Kansas
State University), Peter Allen (Columbia University), Robin Hill (University of
Wyoming), Norman Jacobson (University of California – Irvine), Ben Keller (East-
ern Michigan University), and Ken Bosworth (Idaho State University). In addition,
I wish to thank Neil Stewart and Frank J. Thesen for their comments and ideas for
improvement.

Third edition reviewers included Randall Lechlitner (University of Houstin,
Clear Lake) and Brian C. Hipp (York Technical College). I thank them for their
comments.

Prentice Hall was the original print publisher for the first and second editions.
Without the hard work of many people there, none of this would be possible. Au-
thors simply do not create printer-ready books on their own. Foremost thanks go to
Kate Hargett, Petra Rector, Laura Steele, and Alan Apt, my editors over the years.
My production editors, Irwin Zucker for the second edition, Kathleen Caren for
the original C++ version, and Ed DeFelippis for the Java version, kept everything
moving smoothly during that horrible rush at the end. Thanks to Bill Zobrist and
Bruce Gregory (I think) for getting me into this in the first place. Others at Prentice
Hall who helped me along the way include Truly Donovan, Linda Behrens, and
Phyllis Bregman. Thanks to Tracy Dunkelberger for her help in returning the copy-
right to me, thus enabling the electronic future of this work. I am sure I owe thanks
to many others at Prentice Hall for their help in ways that I am not even aware of.

I am thankful to Shelley Kronzek at Dover publications for her faith in taking
on the print publication of this third edition. Much expanded, with both Java and
C++ versions, and many inconsistencies corrected, I am confident that this is the
best edition yet. But none of us really knows whether students will prefer a free
online textbook or a low-cost, printed bound version. In the end, we believe that
the two formats will be mutually supporting by offering more choices. Production
editor James Miller and design manager Marie Zaczkiewicz have worked hard to
ensure that the production is of the highest quality.

I wish to express my appreciation to Hanan Samet for teaching me about data
structures. I learned much of the philosophy presented here from him as well,
though he is not responsible for any problems with the result. Thanks to my wife
Terry, for her love and support, and to my daughters Irena and Kate for pleasant
diversions from working too hard. Finally, and most importantly, to all of the data
structures students over the years who have taught me what is important and what



xx Preface

should be skipped in a data structures course, and the many new insights they have
provided. This book is dedicated to them.

Cliff Shaffer
Blacksburg, Virginia


